A Neural Circuit Mechanism for the Involvements of Dopamine in Effort-Related Choices: Decay of Learned Values, Secondary Effects of Depletion, and Calculation of Temporal Difference Error

نویسندگان

  • Kenji Morita
  • Ayaka Kato
چکیده

Dopamine has been suggested to be crucially involved in effort-related choices. Key findings are that dopamine depletion (i) changed preference for a high-cost, large-reward option to a low-cost, small-reward option, (ii) but not when the large-reward option was also low-cost or the small-reward option gave no reward, (iii) while increasing the latency in all the cases but only transiently, and (iv) that antagonism of either dopamine D1 or D2 receptors also specifically impaired selection of the high-cost, large-reward option. The underlying neural circuit mechanisms remain unclear. Here we show that findings i-iii can be explained by the dopaminergic representation of temporal-difference reward-prediction error (TD-RPE), whose mechanisms have now become clarified, if (1) the synaptic strengths storing the values of actions mildly decay in time and (2) the obtained-reward-representing excitatory input to dopamine neurons increases after dopamine depletion. The former is potentially caused by background neural activity-induced weak synaptic plasticity, and the latter is assumed to occur through post-depletion increase of neural activity in the pedunculopontine nucleus, where neurons representing obtained reward exist and presumably send excitatory projections to dopamine neurons. We further show that finding iv, which is nontrivial given the suggested distinct functions of the D1 and D2 corticostriatal pathways, can also be explained if we additionally assume a proposed mechanism of TD-RPE calculation, in which the D1 and D2 pathways encode the values of actions with a temporal difference. These results suggest a possible circuit mechanism for the involvements of dopamine in effort-related choices and, simultaneously, provide implications for the mechanisms of TD-RPE calculation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

Efficient Delay Characterization Method to Obtain the Output Waveform of Logic Gates Considering Glitches

Accurate delay calculation of circuit gates is very important in timing analysis of digital circuits. Waveform shapes on the input ports of logic gates should be considered, in the characterization phase of delay calculation, to obtain accurate gate delay values. Glitches and their temporal effect on circuit gate delays should be taken into account for this purpose. However, the explosive numbe...

متن کامل

A Nonlinear Model of Economic Data Related to the German Automobile Industry

Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018